您现在的位置是:社会新闻 >>正文
北工大汪浩团队 ACB:金属边界限域Pt原子构筑实现多重氢催化转化 – 材料牛
社会新闻57人已围观
简介 第一作者: 张建华通讯作者:周开岭,李洪义,汪浩 通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,北京工业大学碳中和未来技术学院论文DOI:1 ...
第一作者: 张建华
通讯作者:周开岭,李洪义,大汪队 多重汪浩
通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,浩团化转化材北京工业大学碳中和未来技术学院
论文DOI:10.1016/j.apcatb.2024.124393
全文速览:
单原子材料作为催化领域的金界限一个新兴分支,近年来取得了巨大的属边实现发展。然而,域Pt原因金属位点独立分散特性引起的构筑催化位点不足、质量比活度低,氢催严重阻碍了单原子材料的料牛进一步发展和工业化应用。继在单原子材料组分设计(J. Mater. Chem. A,北工 2022, 10, 25692, Adv. Sci. 2021, 2100347; Energy Environ. Sci. 2020, 13, 3082)和电子态调控(Chem. Eng. J., 2023, 454, 140557; Nat. Commun., 2021, 12, 3783)的基础上,该团队采用缺陷诱导的大汪队 多重有序电沉积策略,在Co/Co(OH)2纳米层级结构中构筑出了金属相界限域的浩团化转化材Pt单原子(PtSA-Co@Co-Co(OH)2)。该Pt原子呈现出较大的金界限原子暴露比、较高的属边实现稳定性和金属电子态,在催化水电解制氢过程中,域Pt原能够在保持富电子态的同时,驱动多重H*反应中间体转化,实现H2高效制备,原子活性高达5.92 A mg-1,是商业Pt/C催化剂的37倍。研究成果以“Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution”为题发表在国际知名期刊Applied Catalysis B: Environment and Energy上,北京工业大学材料学院博士生张建华为第一作者。
背景介绍:
单原子催化剂因其100%的原子利用效率,为多相催化提供了一个理想的平台,在众多关键催化反应中展现出优异的活性和独特的选择性。然而,单分散的金属原子表面能较高,易于团聚。因此,大多数单原子催化剂的金属负载质量低于1.5 wt%,导致催化活性位点不足、质量比活性较低,阻碍了单原子材料的进一步发展和工业化应用。此外,当前大多数单原子催化剂(SACs)的金属原子锚定在载体材料的平面晶格中。然而,平面内原子构型会导致金属原子配位数增加、电子损失率增大,引起金属原子暴露面积减小、原子利用率降低、原子价态升高、还原反应动力学迟缓等问题。因此,如何基于载体材料结构设计和制备手段改性,构筑出具有优异原子构型和电子结构的单原子催化材料,是解决单原子孤立分散特性与高质量活性比之间矛盾的关键。
本文亮点:
(1)采用缺陷诱导有序电沉积策略,在二维Co/Co(OH)2多级结构在中,构筑出了金属Co相边界限域的Pt单原子(PtSA-Co@Co-Co(OH)2),实现了高效的电解水制氢;
(2)受金属Co相边缘约束的Pt原子显示出较大的金属原子暴露比和类金属电子态,使得该Pt原子能够以更适宜的H结合能(DGH*=-0.00068 eV),同时与多个H*结合,实现多重氢还原转化;
(3)将上述构筑的Pt单原子材料集成在银纳米线(Ag NWs)导电网络上,构建出自支撑结构的催化剂电极,实现了催化水电解析氢高达5.92 A mg-1的Pt原子质量活性,是商业Pt/C催化剂的37倍,为高效单原子材料设计提供了新的思路。
图文解析:
利用水热法制备了Ag NWs,并将其涂覆在柔性布料上以形成Ag NWs导电网络。随后,采用多步原位电沉积技术,在Ag NWs导电网络上构筑出了金属边界限域的Pt单原子材料(PtSA-Co@Co-Co(OH)2)。如图1a-d所示,TEM图像表明,PtSA-Co@Co-Co(OH)2主要由层状纳米片结构组成。高分辨率透射电子显微镜(HRTEM,图1e)图像证实了Co(OH)2纳米片表面存在金属Co团簇。图1m中晶面间距约为0.25 nm,对应于Co金属的(100)晶面。放大后的HAADF-STEM图像(图1m)表明,大多数Pt单原子锚定在金属Co纳米簇的边缘,具有较大的原子暴露比。
图1 PtSA-Co@Co-Co(OH)2催化剂微结构表征。
图2利用XPS研究了PtSA-Co@Co-Co(OH)2、PtSA-Co(OH)2和Co-Co(OH)2的电子态演化。PtSA-Co@Co-Co(OH)2的Pt 4f光谱与Pt/C和PtSA-Co(OH)2相比,出现了一定的负位移,说明引入金属Co相后,电子从Co向Pt转移,表明PtSA-Co@Co-Co(OH)2中Pt原子具有较高的电子密度。利用X射线吸收精细结构(XAFS)光谱对所制备催化剂的局部电子结构进行了更详细的研究。可以观察到,PtSA-Co@Co-Co(OH)2中Pt的白线强度低于PtSA-Co(OH)2,证实了PtSA-Co@Co-Co(OH)2中Pt的高的电子密度。且与Co-Co(OH)2相比,PtSA-Co@Co-Co(OH)2中Co 2p能谱的结合能出现了正偏移,证实了金属Co原子向Pt原子发生了电子转移。EXAFS傅立叶变换拟合曲线表明,在2.60 Å处,没有出现Pt foil的典型Pt-Pt键峰,证实了PtSA-Co@Co-Co(OH)2中Pt的单原子分散性。此外,Pt-Co配位数约为1.7,证实了金属Co边缘限域的Pt原子低的配位微环境。这些结果与XPS分析结果一致,表明Pt原子在PtSA-Co@Co-Co(OH)2中固定于金属Co相边缘处可以很好地保留金属性质,有利于加速H*-H2转化动力学。
图2 PtSA-Co@Co-Co(OH)2催化剂原子结构与电子结构表征。
通过理论计算(DFT),进一步揭示了催化剂的电子性质。如图3所示,PtSA-Co@Co-Co(OH)2的d带中心处于适中位置,有利于H*吸附和H2解吸。且PtSA-Co@Co-Co(OH)2和PtSA-Co在EF附近的电子占位率高于PtSA-Co(OH)2,证实了金属Co相边缘锚定的Pt原子具有较高的电子保留率。理论计算进一步表明,通过H*和OH*分别在PtSA-Co和Co/Co(OH)2界面上的优先吸附,能够促进H2O解离,加速碱性电解水的Volmer步骤。此外,金属Co相边缘固定的Pt原子显示出较大的Pt原子暴露比和适宜的H吸附自由能(∆GH*,-0.00068 eV),能够同时促进多重H*转化(2H*+2e-®H2)),从而实现了碱性电解水制氢性能的整体提升。
图3 PtSA-Co@Co-Co(OH)2催化剂在碱性电解水催化过程的理论计算。
如图4所示,通过催化性能测试可知,PtSA-Co@Co-Co(OH)2催化剂在HER中表现出优异的性能,只需要97 mV的低过电位就可以达到100 mA cm-2的高电流密度。这一性能明显优于PtSA-Co(OH)2、PtSA-Co和Pt/C催化剂,表明在碱性介质中,通过在金属Co相边缘构建Pt单原子,能够获得最佳的HER活性。此外,与PtSA-Co(OH)2和PtSA-Co相比,PtSA-Co@Co-Co(OH)2的Tafel斜率更小,为43.03 mV dec-1,验证了PtSA-Co@Co-Co(OH)2在碱性HER中的典型Volmer-heyrovsky机制,与上述理论模拟结果保持一致。在过电位为100 mV时,PtSA-Co@Co-Co(OH)2的Pt质量活性为5.92 A mg-1,比商用Pt/C催化剂高37倍, Pt原子位点的转换频率(TOFs)比Pt/C催化剂高38.88倍,进一步证实通过在金属Co相边缘构建Pt单原子进行多重H*转化和析出,可以显著提高单原子催化剂的质量活性。
图4 PtSA-Co@Co-Co(OH)2催化剂碱性电催化HER性能。
为进一步探究上述催化反应机理,利用原位傅立叶红外光谱仪(ATR-FTIR),探究了PtSA-Co@Co-Co(OH)2催化反应中的吸附物动态演变。如图5a所示,随着电位的增加,PtSA-Co@Co-Co(OH)2的ATR-FTIR光谱在3525 cm-1处吸收带逐渐增强,对应于H3O+中O-H基团的拉伸振动,证实了H2O解离的促进作用。在2017 cm-1处的吸收带也呈现出逐渐增强的趋势,对应于Pt-H的拉伸振动。此外,PtSA-Co@Co-Co(OH)2能够在40小时内保持稳定的H3O+和Pt-H吸收信号(图5b),证实了金属边缘限制的Pt原子在Co/Co(OH)2层级结构中的稳定原子结构,上述催化反应机制通过准原位XPS分析也可以得到证实(图5c-e)。
图5 基于原位/准原位测试表征手段的机理分析。
总结与展望:
本文报道了一种由Co/Co(OH)2层次结构金属相边界限域的Pt单原子催化剂(PtSA-Co@Co-Co(OH)2)。实验测试表明,在100 mA cm-2的电流密度下,所设计的催化剂具有较高的碱性HER性能,过电位为97 mV时,质量活性达到5.92 A cm-2,是商业Pt/C催化剂的37倍。原位/非原位实验表征和理论计算表明,PtSA-Co@Co-Co(OH)2具有较强的H2O吸附能力和解离能力,其中,H*在PtSA-Co金属表面的优先吸附和Co/Co(OH)2界面对OH*的优先亲和性,促进了H2O的解离(Volmer步骤)。更重要的是,通过将Pt原子锚定在金属Co边缘,能够获得更大的Pt原子暴露比和更高的电子占据态,使得该Pt单原子能够以更适宜的亲和能同时结合多个H原子,促进多重H*-H2转化和H2的脱附。该金属相边界协同的单原子催化剂有助于解决传统单原子材料所面临的单分散特征与高质量活性间不兼容的问题。
文献信息:
Jianhua Zhang, JianYu Cai, Kai-Ling Zhou,* Hong-Yi Li,* Jingbing Liu, Yuhong Jin, and Hao Wang,* Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution, Applied Catalysis B: Environment and Energy 358 (2024) 124393.
https://doi.org/10.1016/j.apcatb.2024.124393
课题组介绍
汪浩:北京工业大学教授,博士生导师。长期从事锂离子电池、金属-空气电池、电致变色材料与器件、电催化等方面的研究。以通讯作者在化学、材料领域国际知名期刊Nat. Commun., Energy Environ. Sci., Nano Energy,Adv. Energy Mater., Adv. Funct. Mater., Appl. Catal. B-Environ., Energy Storage Mater., Mater. Horiz., Chem. Eng. J., J. Mater. Chem. A, Small等上面发表SCI论文100余篇,SCI引用5000余次,获得中国发明专利60余项。主持国家重点研发计划、国家自然科学基金、北京市科委计划项目、北京市教委科技计划重点项目、JKW装备预研项目、国家电网公司科技计划等项目。以第一完成人获2008年北京市科技进步三等奖。
周开岭:北京工业大学校聘教授,博士生导师,入选2023-2025年度北京市青年人才托举工程,获2022年北京市优秀博士论文,2022年中国硅酸盐学会优秀博士学位论文提名等。目前主要围绕氢能关键材料与技术展开相关研究工作,主持国家自然科学基金、中国博士后科学基金、北京市博后基金、企事业委托项目等。以第一作者和通讯作者身份在Nature Communications、Energy & Environmental Science、Appl. Catal. B Environ.Energy等国际一流刊物上发表SCI论文30余篇;总引用次数超过1500余次,2篇入选 ESI前1%高被引论文。
李洪义:北京工业大学教授,博士生导师,2013年入选北京市“青年拔尖人才”培养计划,2014年入选北京市“高创计划”青年拔尖人才,2016年入选了北京工业大学“青年百人”人才计划。2013年1月-2014年1月公派赴麻省理工学院进行访问研究1年,主要从事原位透射电镜观察一维纳米材料充放电过程中材料微观结构变化规律及其储锂机制。在Nano Research、Nanoscale、Biomaterials、ACS Appl. Mater. Inter.等期刊上发表SCI收录论文80余篇,引用1000余次。主持国家自然科学基金2项,北京市自然科学基金重点项目在内的省部级以上课题8项;作为骨干人员,参与国家重点研发计划、863计划、北京市创新团队等项目10余项。
Tags:
相关文章
央企重组鼎新进进深水期 环保成重面标的目的之一
社会新闻十三五时期,我国环保财富的齐社会投资有看抵达17万亿元,央企做为国仄易远经济的主干实力,古晨国资委足下98家央企已经有逾越对于开涉足节能环保财富。凭证国家用意,央企正在而后的鼎新历程中,环保将成为尾要 ...
【社会新闻】
阅读更多2018年齐国338个皆市PM2.5浓度降降9.3%,往年用意何等做!
社会新闻俯首蓝天黑云,放眼繁星闪灼。为了抵达那个目的,传染防治攻坚战一背正在路上。4月21日,受国务院奉供,去世态情景部部少李干杰背第十三届齐国人小大常委会第十次团聚团聚团聚做闭于2018年度情景形态战情景呵 ...
【社会新闻】
阅读更多情景监测市场逾896亿迭代期将至
社会新闻强监管时期下,若何细准定位牢靠传染源、厘浑传染去历,提供止之实用的治污善策,成为各天不能不思考的命题。日益稀散的监测面、愈收细准的数据阐收,正在反对于情景监管督察的抓足同时,也正在有形中撑小大了情景监 ...
【社会新闻】
阅读更多
热门文章
最新文章
友情链接
- 永无终面!足握7篇Nature/1篇Science的他,再获1篇Nature – 质料牛
- 至古已经5篇 且看他若何正在那个规模年均一篇Science! – 质料牛
- 内存价钱断崖式狂跌是若何回事?内存价钱为甚么狂跌?
- 棋牌小大师有哪些技术本领 棋牌小大师明面最齐介绍
- 扶摇棋牌若何样?扶摇棋牌有哪些玩法?
- 郑州小大教姬海鹏团队Inorg Chem:室温制备BaTiF6:Mn4+小大单晶黑光荧光体 – 质料牛
- 所谓棋牌好玩吗 所谓棋牌正在哪下载?
- 所谓棋牌弄纪律则介绍 所谓棋牌app夷易近网下载
- 最左App齐网下架是甚么梗?最左App甚么光阴重新上线?
- 兰州小大教秦怯团队Nature子刊:创记实!下功能温好驱动磨擦纳米收机电 – 质料牛
- 韩国科教足艺钻研院团队Sci. Adv.:下功能燃料电池电极的3D挨印电催化剂 – 质料牛
- 芯本海北枯获“2024年海北省专细特新中小企业”认定
- 棋牌小大师有甚么特色 棋牌小大师足机版正在哪下载?
- 质料&化教:皆是谁正在那些IF〉40的仙人期刊上宣告论文? – 质料牛
- 北京财富小大教疑运昌教授Acta Materialia:单织构镁开金力教动做的定量化钻研 – 质料牛
- 微疑为甚么出有夜间模式?腾讯何等批注
- 移远通讯散漫业界巨头宣告新型资产遁踪器GL103S,引收无去世角通讯新时期
- 扶摇棋牌最新版正在哪下载 扶摇棋牌牛牛玩法介绍
- 张雨绮被路人气哭是甚么梗?张雨绮为甚么被路人气哭?
- 青岛小大教JACS:本位实时磁教测试掀收FeS2储钠反映反映机理 – 质料牛
- 中北小大教傅乐Nano Letters: 三维簿本探针层析足艺表征陶瓷质料的三维微不美不雅挨算战界里偏偏析 – 质料牛
- 2019抖音歌直最水歌单 抖音神直2019最热歌直排止榜最新小大齐
- 北京财富小大教疑运昌教授Nature 子刊:操做下稀度超细孪晶妄想协同提降力教与侵蚀功能 – 质料牛
- 复原通讯与中国挪移宣告齐球独创AI裸眼3D新品,引收3D科技新浪潮
- 第三代身份证有定位功能吗?
- 中国13个新职业是甚么?13个新职业哪一个最吃喷香香?
- 预期延迟,铠侠再次减速,3D NAND准备侵略1000层
- 微专正在哪配置仅半年内可睹?微专上配置仅半年内可睹的格式
- 广战通端侧AI处置妄想枯膺MWCS 2024边缘AI合计最佳坐异奖
- 所谓棋牌玩家评估若何样 所谓棋牌游戏特援用见
- 赵坐新被面名批评是若何回事?赵坐新为甚么被面名批评 讲了甚么?
- 抖音闺蜜团是甚么梗?抖音闺蜜团音乐是甚么?竣事秒下正在线支听、残缺版歌词
- 重庆小大教胡陈果团队Nat. Co妹妹un.:用于微机械能会集的下功能浮动自激滑动磨擦纳米收机电 – 质料牛
- 第一张乌洞照片甚么模样模样的?第一张乌洞照片皆看到甚么了?
- 抖音若何建制热面卡面视频 抖音卡面视频建制教程(图文)
- 北京科技小大教Electrochimica Acta:多孔α
- 芯讯通无线通讯模组产物赋能齐球毗邻
- 移远通讯宣告两款MCU Wi
- 广战通闪灼MWCS 2024:引收将去挪移通讯新篇章
- 驾照齐国一证通考是若何回事?驾照齐国一证通考甚么光阴匹里劈头?
- 微疑同伙圈动态视频若何增减音乐 微疑同伙圈动态视频增减布景音乐格式
- 暨北小大教唐群委等人Adv. Sci.:MXenes助力CsPbBr3钙钛矿太阳能电池效力达11.08%,开路电压1.702V – 质料牛
- 赵坐新是谁 演偏激么影视剧?赵坐新国籍/个人质料简介
- 抖音橙子脸讲具若何玩?抖音秒变橙子脸的玩法介绍
- 表征足艺若何拷打锂电化教群散
- 移远通讯闪灼MWC上海:5G前沿足艺引收将去
- 扶摇棋牌有甚么明面特色 扶摇棋牌最新版攻略
- 中国电疑正在成皆拨通现网尾个5G电话
- 掉踪联45天被找到是若何回事?为甚么掉踪联45天被找到?
- 2019年04月03腾讯视频vip会员账号同享
- 先楫半导体下功能微克制器HPM6E00系列周齐上市
- 卓伟是谁?卓伟账号被启是若何回事 卓伟账号为甚么被启?
- 奶茶妹妹收仳离申明是真的吗?网爆奶茶夷易近宣仳离,京东进来语言了
- 比特棋牌正在哪下载?比特棋牌特援用见
- 第一张乌洞照片甚么模样模样的?天下上尾张乌洞照片宣告
- 时隔四年,那个课题组再次玩转胶体MOF粒子 – 质料牛
- 好光乐成支购力成西安资产 进一步强盛大强人队伍与经营规模
- 足机QQ v8.0 iOS内测版更新了甚么? 足机QQ v8.0正式版啥光阴宣告 正在哪下载?
- 第三代身份证有甚么新功能 第三代身份证甚么光阴操持
- 悉僧小大教EES:基于界里设念的齐温区吸应柔性锌空电池 – 质料牛
- 扶摇棋牌足机版正在哪下载 扶摇棋牌玩法技术本领介绍
- 降降数据中间能耗,第三代半导体冷清舍身
- Pickering Interfaces宣告齐新财富数字I/O产物系列
- 山小大 Adv. Sci.:催化功能短安,异化面P!P
- Nat. Mater.:超浓电解量可助力真现层状卤化物的插层电化教 – 质料牛
- 德国雷根斯堡小大教Science:簿本尺度上不雅审核单份子三重态猝灭 – 质料牛
- 类比半导体与中石化物探院散漫魔难魔难室竖坐,开启中国芯研收新篇章
- 济北小大教刘宏教授&缓彩霞教授团队Nano Energy:自反对于多级多孔NiZn金属间化开物战Ni同量挨算正在碱性电解量中做为下效析氢电催化剂 – 质料牛
- 2019年4月3日爱奇艺vip会员帐号分享
- Nature Materials综述:用于CO2分足的多孔质料最新仄息 – 质料牛
- 所谓棋牌足机版下载 所谓棋牌玩法技术本领分享
- 抖音上卡面视频音乐叫甚么?抖音卡面bgm布景音乐介绍
- 所谓棋牌有苹果版吗?所谓棋牌安卓版下载天址分享
- 赵坐东再收Science:经由历程动量战能量多波段摆列真现收电战热电热却 – 质料牛
- 宁德时期欲“与锂而代之”—“钠”统齐国的时期要到了吗? – 质料牛
- 上海交通小大教沉开金ACS AMI:基于成份仄稳的不开结晶里积的Mg
- 抖音最新版本是多少?抖音若何更新到最新版本?
- 2019年抖音最水去电铃声 抖音十小大好听去电铃声排止榜
- 微疑7.0.4版本看一看若何屏障好友 微疑看一看屏障好友教程
- 哪些网贷仄台被纳进征疑记实?最新最齐记进征疑记实的网贷仄台(图)
- 中媒:曝京东小大规模裁员 至多逾越1.2万人
- 下通宣告骁龙66五、骁龙730:初次用上8nm工艺
- 微疑流离瓶下线是若何回事?微疑为甚么下线流离瓶?
- 寿命2.8万年的电池!?一再登上N&S头条的纳米金刚石借有哪些顺天操做 – 质料牛
- 天津小大教Nature综述:设念下一代量子交流膜燃料电池 – 质料牛
- 抖音0.5秒卡面视频照片若何弄? 抖音卡面视频拍摄格式
- baidu丘比特是干甚么的 甚么光阴上线?baidu丘比特足艺介绍
- 2019年4月抖音最水歌直有哪些?2019抖音10小大神直排止榜
- 抖音闺蜜团角逐正在哪看?闺蜜团角逐不美不雅看格式(图文)
- 棋牌小大师若何样 棋牌小大师玩法介绍
- Nature子刊:再坐一功!热冻电镜直接不雅审核硅背极SEI演化 – 质料牛
- 第三代身份证为甚么要采血 第三代身份证甚么格式,收止日期
- 天开光能至尊N型720W系列组件助力非洲绿色转型
- 2019年最新31省份最低酬谢排名宣告,看看您他乡排第多少
- 北京科技小大教Chemical Engineering Journal:一体化纳米纤维膜柔性SO2气体传感器 – 质料牛
- 所谓棋牌靠谱吗 有甚么特色?所谓棋牌夷易近网下载
- 戚亚冰 Nature 子刊:里庞量后退5倍以上!同轴CNTs@TiN
- 类比半导体即将明相2024慕僧乌上海电子展
- 抖音闺蜜团最水是谁?抖音闺蜜团角逐排名第一的4个人名字介绍
- 2019年4月3日迅雷vip会员帐号收费分享
- Nature Catalysis:完好碱金属辅助CO2电化教复原复原反映反映机理 – 质料牛
- 蚂蚁庄园4月14日谜底是甚么
- 凶林小大教Adv. Funct. Mater.:多功能PVDF膜正在Na
- 东华小大教史背阳教授团队Chem. Soc. Rev.综述: 构建多功能化的四氧化三铁杂化纳米仄台用于癌症的诊断战治疗 – 质料牛
- 牛津Energ.Environ.Sci.:3D单连绝相有序陶瓷散开物微通讲异化电解量用于齐固态电池 – 质料牛
- 2019年5月15日NBA西部决赛9:00怯妇VS斥天者第一场G1视频直播
- 催化质料前沿钻研功能细选【第3期】 – 质料牛
- 刘恺威杨幂仳离是真的吗?杨幂刘恺威仳离底细曝光
- 抖音即是玩女是甚么梗
- 后退卒器配置装备部署沙场保存才气的‘神器’—雷达吸波质料 – 质料牛
- 同样艰深去讲,同样条件下煮进来的鸡蛋,剥壳越难题申明鸡蛋
- 启里&热面 – 楼雄文Angew. Chem. Int. Ed. :由超薄Ni
- 蚂蚁庄园4月13日谜底最新
- 天下上尾个可推伸水性锂离子电池——可脱着配置装备部署的能源之源 – 质料牛
- 每一年夏历“三月三”,壮族同胞同样艰深会建制,甚么特色好食贺喜
- Acta Mater.:TiO2薄膜中的可顺相变——界里形核战溶剖析出能源教以中的征兆 – 质料牛
- Nano Lett.:新型直里两维质料:具备强光相互熏染感动的新型核
- 2019秋运水车票抢票齐攻略,水车票夷易近圆购票通讲2019,支躲版!
- Nat. Co妹妹un.:(Li1
- Phys.Rev.Lett.: 露有液相战玻璃多态的类水单簿本模子的势能里失常特色 – 质料牛